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CHAPTER 1

INTRODITCTION

1.1 The Microburst

The term downburst was used by T. Theodore Fujita to describe a form of low-

altitude windshear in which a downdraft of air impacts tile ground and diverges

into a horizontal outflow. Outflows with a radius greater than 4kin are called mac-

robursts while events with smaller outflows are called microbursts [1]. Low-altitude

microbursts have been recognized as a hazard to aviation for aircrafts attempting to

fly through this event. An aircraft encountering a microburst will first experience

a performance increasing headwind as it enters the forward outflow, but encounters

a strong downdraft as it approaches the center of the microburst. The performance

decrease caused bv the downdraft is further increased by the tailwind created as the

aircraft flies out of the microburst. In some cases the performance decrease caused bv

such an event would render an escape impossible. A microburst event is represented

in Figure 1.1.

1.2 Windspeed Gradient

Typical procedures for airborne windshear detection rely on the estimation of the

windfield characteristics present within a region of space positioned in front of the

aircraft. This space represents the region of possible flight paths for the aircraft. A

potentially hazardous condition exists in the forward-looking direction when there is

a large headwind-to-tailwind gradient in the windspeed. Such a gradient typically re-

flects the windspeed characteristics observed by an aircraft as it penetrates the outflow

of a microburst event. A sampling of average windspeed measurements throughout

the outflow region will typically follow a gradient in windspeed feature known as an

"S"-curve pattern. An example "S"-curve is shown in Figure 1.2. Note the rapid
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change from a negative windspeed (headwind), to a positive windspeed (tailwind).

From these measured windspeed values, an attempt can be made to assign a value to

the effect of the corresponding windfield conditions upon the performance level of the

aircraft as it flies through the given region of space. One such measure of a hazardous

situation has been defined in [9] in terms of a maximum windspeed divergence of over

10 meters per second (m/s) occurring in a region of less than 4 km.

It is important to note that the windfield estimates from forward-looking airborne

sensors, such as pulse Doppler radar, LIDAR (Laser Interferometric Detection and

Ranging) [3], and FLIR (forward looking infrared radiometer) [4] have only' the ability

to estimate radial (line-of-sight) windspeeds along the direction where the sensors are

pointed. Current research continues on the ability of these systems to provide a

reliable advanced warning of a windshear condition.

due to gravity.

given by

1.3 Hazard Factor

It is necessary to define a measure of the severity of a microburst in terms of its

performance-decreasing effect on an aircraft flying through the event. The analysis

involved in computing such an index relies upon the concept of airplane total energy

which is the sum of the aircraft's kinetic and potential energy [3]. Temporally and

spatially varying windfields will contribute to the rate of change of airplane total

energy. Severe windfield events, such as a microburst, can significantly lower total

energy to the point where the aircraft can no longer remain in the air.

Define the airplane total energy as

E = lrnu2 + hmg (1 1)
2

where m is the mass of the aircraft, u is airspeed, h is altitude, and g is acceleration

Tile potential altitude is defined as energy per unit weight and is

E //2

hp - - + h. (1.2)
mg 29

3
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Computing the potential rate of climb assuming energy loss is negligible yields

4-_ (1.3)_ _ __
m9 9

which, when combined with aircraft equations of motion results ill

- - cos7 + --sin7 u (1.4)
mg mg g

where T is aircraft thrust, D is drag, 7 is the flight-path angle, and l,I'_ and Wh

are the horizontal and vertical components of the wind velocity'. Assuming nearly

stable flight, i.e., T m D and 7 _ 0, equation (1.4) reduces to the hazard factor or

"F-factor" equation

Equation (1.4) now becomes

F- W,_ t,l,_

g /.t
(1.5)

T D
hp - - Fu . (1.6)

mg rn 9

Equation (1.6) defines quantitatively the performance decrease that a windshear con-

dition may inflict upon an aircraft. Note that the "F-factor" in this equation is

derived solely from windfield information, providing an aircraft-independent measure

of the severity of the windfield. The thrust-to-weight ratio for any type of aircraft is

then factored in to provide an aircraft specific hazard index. One common measure

of hazard is defined for "F-factor" values above a typical threshold of 0.15.

1.4 Hazard Factor Algorithm

A method is presented in [5] for computing a hazard factor from windspeed esti-

mates based on a weighted least-squares technique that reduces the effect of noise due

to stationary and moving ground clutter. This hazard factor algorithm is currently

implemented in the Airborne Windshear Doppler Radar Simulation (AWDRS) pro-

gram [6] in addition to all hazard factor computations presented in this thesis. The

technique estimates the slope of a linear function of windspeed vs. range for a given

5



range. Each windspeedmeasurementis weighted by tile spectral \x'i(ltil (,t the en-

ergy return, providing an estimate of the confidence of the measurement. Currently,

windspeed estimates from five adjacent range cells are used for each computation of

hazard. An advantage to the weighted least-squares algorithm is tile addition of a

measure giving the error of tile estimate. This error is the averaged sum u[ the least-

square residuals and can be used to identifv wide cell-to-cell variations in windspeed

estimates. Consider the measured windspeed, _ over m range cells (m _ 5).

O i = bl Jr" b2rj -t- ej (1.7)

where bl and b2 are constants, 5j is the estimated mean Doppler velocity at range

rj, and ej is the least-squares approximation error• The estimate b2 represents the

velocity-to-range slope and is desired for the estimate of hazard• Begin the least-

squares solution for b2 by representing (1.7) in matrix form

,;,= A/, + (1.8)

where 0 is an rn x 1 column vector containing values of 5,/, b is a 2 x 1 column vector

containing bl and b_ respectively, _ is the column vector of % values, and ,4 is an

A

m x 2 matrix of the form

1 rm

(t.9)

By adding a weighting matrix to the least-squares solution of 1.8, the estimates of t3j

with the greatest confidence level will influence the least-squares solution more, and

the estimates which have a low confidence level will not influence the solution of ( 1.8)

The weighting matrix ¢ is composed of spectral width measurements crj,as much.

producing
1 0
--7,
0 ± •

1

(1.10)
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A discussionof spectralwidth estimatorsfollowsin Chapter 2. Tile weighting matrix

is included into the least-squarespseudoinversesolution of (1.8) for matrix D [7]

b= (Ar¢-'A)-' 4TO-lO . (1.11)

From (1.11) the hazard level is contained in the b2 component of matrix b. Smoothing

of this estimate over adjacent range cells through averaging is possible, although

results presented in this thesis are without averaging. The error estimate or "'goodness

of fit" is equal to the weighted sum of the error vector

]r =- @To-I_ (1.12)
m

and can be used to exclude an estimate as invalid if r is greater than a given threshold,

indicating that the least-squares fit has substantial error.

1.5 Doppler Weather Radar

The advantage of pulse Doppler radar over conventional radar is Doppler's ability

to identify not only range to an object in the radar's scanning area but also the relative

velocities of these objects. For this reason, Doppler weather radar may prove to be an

effective device in the detection and avoidance of hazardous low-altitude windshear by

identifying approaching windfield characteristics. The ranging capability of the radar

is achieved by measuring the time in which a transmitted pulse of energy is reflected

off objects and returned to the receiver. The operating characteristics of Doppler

radar from a time domain perspective have been thoroughly presented [8, 9, 10].

Here a frequency spectrum analysis of Doppler Radar is provided.

Scatterers which return transmitted radar energy will induce a Doppler shift

in the frequency of the transmitted pulse energy proportional to the radial velocity

between the object and the transmitting/receiving antenna. Objects approaching the

antenna will cause a Doppler shift of the transmitted energy to a higher frequency

while a diverging object relative to the antenna will create a Doppler shift to a lower

7



frequency. Considera transmitted pulse._q(t).havingamplitude .4 which is composed

of a single frequency,fo,

s(t) = ,4cos(2, fot) (1.13)

which has the following frequency spectrum:

1 4e./(2,_.tot+_ ) + 1
co(f) = br[s(t)] = _. _Ae-a(2".tot+*') . (1.14)

Tile amount of transmitted energy returned to the receiving antenna is equal to the

sum of the return energy from all scatterers. The frequency of the return from scat-

terer i, will be Doppler shifted by an amount proportional to the relative velocity

between the receiver and the scatterer and the total Doppler spectrum will be a

distribution of returns from all scatterers. The relationship between the radial veloc-

ities of the scatterers and the corresponding shift in Doppler frequency can be shown

through the Doppler equation for light as predicted by the theory of relativity [11]

U

f,=f c

when the returned energy reaches the radar antenna.

(1.15)

where f is the transmitted frequency and f' is the frequency observed by an object

where the relative velocity between the source and the target is u and c is the speed

of light. Negative u indicates that the objects are converging and positive u indicates

that the objects are diverging. In the case of Doppler radar, the Doppler shift must

be computed twice: first when the transmitted pulse reaches a scatterer, and again

At the scatterer, the Doppler

shift of the transmitted pulse can be described bv

1 v,-v_

f[ = fo _ (1.16)

where f[ is the frequency observed at scatterer i, and v, and v_ are the radial velocities

of scatterer i and the aircraft, respectively. The aircraft velocity in included in order

to remove the effect of a moving radar platform. The next step is to compute the

8



Doppler shift between the reflected energy, f[. and the frequencv observed at the

receiver, namely,

1 _ !z=._

f, = f[ _ (1.17)
v/1 ( c

Combining (1.16) and (1.17) yields the total Doppler shift in terms of transmitted

frequency and received frequency

[1 _ _ + (_,-_)2f, = fo c _ (1.18)
v/1

Assuming vi - t,_ << e allows for the elimination of second order terms, thus reducing

(1.18) to the linear approximation

fi = fo [1 2(vi - v=) (1.19)
k C

Equation (1.19) describes the relationship between the radial velocities of an airborne

Doppler radar system and scatterers in its range cell volume and the Doppler shift

in frequency of the returned signal. Assuming a transmitted pulse having the energy

spectrum given in (1.14), the spectrum of the returned energy is

f la.,.j_,f,t+_,) 1A,.-:l_,s,t-_.}_
Sr,,(f) = _ i._..,_ + 2..,_ J (1.20)

l

where Ai is the amount of energy returned from scatterer i and hi is the phase offset

due to scatterer i. Because the returned energy contains Doppler shifts about +fo,

it is necessary to demodulate the transmitted signal in order to obtain Doppler fre-

quency shifts that are centered about zero frequency, as in stationary objects, rather

than the transmitted frequency fo. This demodulation is accomplished by multiply-

ing the returned signal, Sr_t by the single-sided complex exponential at frequency

f, = fo(1 + 2v_/c), resulting in a negative shift in all frequencies of S_ by f_. Note

that the modulation term f, includes the aircraft velocity, which must be known. The

shifted signal becomes

StQ(f) = Sr,,(f) * 5(f - f_) (1.21)

= Y'_fl4":(2"[l'-l'l'+*')+lAie-J'2"[]'+/'l'-_"},L2" '_ . (1.22)

9



Applying (1.19) and the formula for the wavelengthof an electromagnetic signal.

Ao = c/fo, to (1.22) yields

i Aie_,(.a_[2A__olt+o,) } (1.23)
|

The second term in (1.23) can be removed through a low-pass filter resulting in

a complex baseband signal representing the returned Doppler shift centered about

zero frequency. This signal is commonly represented bv its resulting in-phase and

quadrature-phase time series returns of the form

,= Z[A.. +0,)]
[ )]Q = ___ Aisin[_t+¢i . (1.25)

1

Equations (1.24) and (1.25) define the complex time series referred to as IQ data

in terms of the sum of Doppler shifts caused by all scatterers. I refers to the real

component of the complex series while Q refers to the imaginary component. For

any single scatterer, the complex frequency of the IQ data will be related to the

line-of-sight velocity of the scatterer relative to ground, that is,

2v

f dopp -- -- Ao
(1.26)

where v is the ground velocity of the scatterer projected along the line-of-sight from

the radar antenna to the scatterer. For a given sampling rate equal to the pulse-

repetition frequency (PRF), the greatest unaliased frequency returned is

1 (1.27)
fm.= 

and the maximum unambiguous velocity of a scatterer is

A° (1.28)
Vrnax -- _ •

The radar parameters used for all analysis include a PRF of 3755 pulses-per-second,

a pulse width of 0.96pa, and a transmitted frequency of 9.33625 GHz (Ao = 3.21103

cm). From (1.28) the maximum unambiguous relative velocity for this situation will

be equal to 30.14 m/s.

10



1.6 Problem Statement

The ability to detect a hazardouscondition with the "F-factor' index relies

heavily upon theaccuracyof the windspeedestimatesobtained. Strongclutter returns

can heavily bias pulse-pair and spectral mean estimatesof windspeed. A common

approachto increasingthe signal-to-clutter ratio for better windspeedestimation is to

implementa notch filter to reducethemain clutter return which is usually presentnear

zerorelative velocity. This filtering can,however,attenuate the weather return which

will further reducethe accuracy."of the windspeedestimate. Proposed is a method

whereby an unbiasedestimate of windspeedcan be achievedin a computationally

attractive procedureand without clutter rejection filtering.

11



CHAPTER 2

WINDSPEED ESTIMATION

Although a Doppler weatherradar systemcannot directly"measurewindfield con-

ditions, it is possibleto infer information about suchconditions whenthe radar return

is a backscatteringof energy,from targets which are suspendedparticles and whose

motion is controlled by the prevailingwindfield conditions. As shownin section 1.5,

the returned radar energy for a given volume will consist of a collection of returns

from all targets that scatter or reflect the incident radar energy. In the caseof a

Doppler weather radar system, the targets are assumedto be particles suspended

in the resolution volume, suchas rain droplets, dust, or insects. From the Doppler

spectrum, which containsa distribution of returns from all targets, windspeedestima-

tion techniquesattempt to characterizethe windfield motion in the current resolution

volume basedon the motion of the targets in the resolution volume.

2.1 Time Domain Pulse-PairMean and Width Estimator

The time domain pulse-pair processoris a mean frequencyestimator that pro-

rides an estimate of Doppler spectral mean and width in terms of the first autocor-

relation lag. The pulse-pair Doppler meanestimate is [12]

-Ao arg{ k(T,)} (2,1)
b- 4rrT,

with the autocorrelation of the time series at lag T, given by

1 N-2

n/r ) = T E + 1). (2.2)
n=O

Let x(7_) be a series of N complex IQ data samples recorded at the pulse repetition

interval, T_, where T, = 1/PRF. Equation ('2.'2) is then equal to the complex auto-

correlatiol_ of x(1_) at a lag of one pulse, thus. define/_1 = H(T_). The corresponding



pulse-pair Doppler width estimatefor x(n) is

I'" (2.3)

In (2.3), S is the total power in the data sequence,

1 N-1

- _- E Ix(,_)l2. (2.4)
n_O

The sgn term is included in order to tag the width estimate with a negative value on

the occasion when the estimate /)(T,) is greater than the estimate S. For the case

where &v << 1, an alternate width estimator [12] can be used

A
_'v m

2_'T,v_ 1 _-- sgn_l _ ] (2.5)

This estimate of spectral width is only valid over the given range of narrow widths

due to a bias present at larger spectral widths.

2.2 Frequency Domain Pulse-Pair Mean and Width Estimator

The frequency domain pulse-pair mean estimator performs a similar analvsis with

similar results as its time domain counterpart. The difference is that the frequency

domain estimator computes the autocorrelation of the sequence at lag T, from the

power spectrum rather than from the time series. The equation for Doppler mean

estimate remains the same as in (2.1), that is.

-A0

f' - 4_T, arg/)(T_) . (2.6)

However. the first autocorrelation lag can be derived directly from the power spectrum

with

1 N-I
2_k

= _ (2.7)k, .i: _ _v(_-)_J
_:=0

where the power spectrum is defined as

_t(_.) = !.\(_.)1_ =
,\'-1 t 2
Z 2_"nk.r(,_)e-_-7-

n=O

(2.s)

13



In order for the autocorrelation of (2.7) to yield the same results as (2.1) at least one

zero must be appended to the time series x(n) before the discrete fourier transform

(DFT) is implemented to giveX(k). This is due to the nature of the DFT, which

assumes a periodic time series. Without a padding of at least one zero value, the

inverse DFT implementation of (2.7) would correlate the last sample :r(A: - 1) with

the first sample x(0). The frequency domain spectral width estimator resembles the

corresponding time domain width estimator given in (2.3) and (2.5) except for the

modified autocorrelation estimate/_, and the total power estimate S. The total power

is equal to the sum of the power spectrum

I N-1

k=0

The computation of pulse-pair spectral mean and width in either the time domain

or the spectral domain yield similar results. Therefore, the implementation of one

technique over the other would normally be based on computational costs.

2.3 Spectral Domain Mean-Variance Mean and Width Estimator

An alternative algorithm estimates the Doppler mean and width bv computing

the mean and variance of the given power spectrum directly in the spectral domain.

For this algorithm, the first and second moments about an estimate mean bin number,

kin, are computed [12]. km is determined from the frequency bin in 14"(k) containing

maximum energy. The Doppler mean estimate is then computed with

i, = _ _ + ?,'T _ (k- km)W[mod,'(k)] (2.10)
,- Sk=k, n -

In (2.10), _' is the total power of the data sequence and mod.<(]v) denoles /," modulo

:\'. The Doppler width estimate &. is equal to the variance of the power spectrum

about k,,_.

A2 t=_"+v k 2_'T_ 2
6",= _ + W4/;T 2 y _ [mod\(k) (2.11)

14



2.4 The Effect of Clutter on WindspeedEstimates

A major concern with airborne pulse Doppler radar systems is the presence

of strong energy'returns from targets not controlled by wind. These targets can be

stationary' or movingobjectson the ground, or objects ill tile rangecell volmnewhose

motion is not controlled by the wind suchas birds or other aircraft. In situations

involving heavy rainfall, it has beenobservedthat the main rain shaft may not be

under the control of divergentwinds and may appearas a mode about Doppler zero,

similar to a ground clutter signature. Unwantedreturns originating from the ground

are called ground clutter and can significantly inhibit a svstem's ability to correctly'

identi_' a hazardouscondition. Due to physical requirementswhich necessitatethe

use of antenna elevation anglesdirected at or near the ground, airborne weather

radar systemsare more susceptibleto the effects of ground clutter contamination

than ground basedsystemswith muchhigher antennaelevations.

Although microburst conditions canoccur at any altitude, it is the low-altitude

windsheareventswhich inherently posethegreatesthazardto an aircraft penetrating

suchan eventdue to the horizontal shearcreatedby'the microburst as it impacts the

ground. This hazard is also complicated by the low altitude of the scenariowhich

providesthe pilot with a relatively short responsetime in which to avoid catastrophe.

In order for an airborne radar systemto observesuch low-altitude events, antenna

elevation anglesmust be kept small sothat anv hazardouswindshear conditions can

be identified. Antenna elevations currently being used are typically within three

degreesaboveor below horizontal. At theseelevations, radar return from antenna

sidelobescan introduce muchunwantedclutter into the receivedsignal, especially at

closerranges.

Moving objects on the ground suchascars on a nearby interstate highway can

create "'discreteclutter" which wil] appear asa narrow spectral peak within the re-

turned IQ data. This form of clutter can impair the ability to correctly estimate

15



windspeedvaluesbecausethe clutter can be located anvwherein the Doppler spec-

trum and thus, is difficult to characterize. The implications of discrete clutter on

modal analysis are discussed in Chapter 4.

Because clutter from stationary reflectors can be characterized as a spectral mode

near Doppler zero, it can be more readily removed through a clutter rejection filter.

The presence of a strong clutter return can severely impair the ability of mean spectral

estimators such as pulse-pair and mean-variance to correctly identify the windspeed

conditions present in a given range cell. Clutter can bias a windspeed estimate toward

Doppler zero or in the event of a strong clutter return and a weak weather return,

completely cover the weather return signature. However, by identifying clutter char-

acteristics, measures can be taken to reduce the unwanted effects of clutter upon

windspeed estimators.

2.5 Clutter Rejection Filters

The general approach to reducing the effect of clutter on windspeed estimates

is to remove the clutter return through filtering. Several types of clutter rejection

filters exist which can improve the quality of mean spectral estimators by attempting

to remove returns from clutter targets while retaining returns from weather targets.

Because weather and clutter returns may overlap both spatially and temporally, a

complete removal of clutter return energy without some attenuation to any weather

return present is not possible. In general, clutter energy is characterized as a nar-

row band near Doppler zero. Clutter rejection filters are typically notch filters which

remove spectral energy near Doppler zero. Some typical clutter rejection filtering

methods include (1) fnite impulse response (FIR) notch filter [13. 14. 15]. (2) infinite

impulse response (fIR notch filter [13. 14. 15]. and (3) spectral domain line editing

(ideal notch filtering) [13]. The disadvantages to clutter rejection filtering are the ad-

ditional computational resources needed and the possible attenuation of the weather

signal below a detectable level.
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CHAPTER 3

SPECTRAL ESTIMATION USING MODAL ANALYSIS

Typically, meanestimatorssuchasthe pulse-pairmethod function by attempting

to reducethe energy'return through filtering sothat the remaining return appearsto

haveoriginated from a singlesource.

Proposedis a method for windspeedestimation basedon a modal analysisap-

proach which would not require filtering of an unwanted clutter return. Unlike the

pulse-pairestimator, a modal analysisapproachattempts to model the returns from

all sources.In this way',it attempts to identify' all dominant sourcesof energy"return

presentwithout having to rely on a singlemeanestimator for the windspeedsuchas

the pulse-pair estimator, which can only, yield a single spectral location parameter

associatedwith the return data. When the spectral content of the return data in-

cludesmore than onemode,the singlepulse-pairestimatewill attempt to reflect both

modeswith a singlevalueproducing an estimate that is potentially uncharacteristic

of either mode. To compensatefor this, clutter rejection filtering generally is usedin

conjunction with the pulse pair-estimator. Filtering attempts to remove the return

energy'from undesiredsourceswhile retaining the return energy from the desired

weather source. In contrast, a modal approach to windspeed estimation models the

return energy' from all sources and then attempts to classify the source of each return.

For the problem at hand. the primary sources of return energy to the Doppler

radar system are weather and clutter. Based on the assumption that only these

two primary sources of return energy' exist, a method of spectral estimation which

involves the modeling of two dominant modes is sufficient. Once the identification of

the spectral modes is achieved, a statistical two-class pattern recognition routine can

l_e employe, I for the classification of modes.



3.1 The Prony Approach

The Prony method wascreatedby GaspardRiche, Baron de Pronv as a means

of representingthe expansionof various gasesin terms of the sums of complex ex-

ponentials. Assumethat there exists a sequence,x,_, consisting of :V complex data

samples. The Prony method generates an alternate series, 5:,, which approximates

the original series through a summation of M complex exponential terms [I 6, 17]. For

an approximation where N _< 2M, the exact series can be represented and 2,_ will

equal x,_. For situations where ¥ > 2M, an approximation of x, containing some

error will be generated. Define the approximation

M

5:,_= _ Cm#_, forn =0,...,:V-1 (3.1)
m=l

where C,_ and/_m are complex values of the form

Cm = A._ expjOm (3.2)

/_,_ = exp[(o_m + j27rfm)_t]. (3.3)

Equations (3.2) and (3.3) consist of four parameters. Am is amplitude, 0,,_ is initial

phase, a,_ is a damping factor, and fm is frequency in Hertz. The ,\" equations in (3.1)

contain the 2M complex unknowns C,_ and p,_ for 1 _< m <_ M. Prony's technique

provides a method of solving for the parameters {Am. 0,_, a,_, f,,_ } that will minimize

the squared error
,\'- 1

= Z I ,,I (3.4)
n_O

where the approximation error is the difference between the measured series and the

estimated series

_ = 3:,, - 2_ . (3.5)

To begin the Pronv approach, define the equation

(_,,_P_'-" = I-I (P-/_)" a0 = 1 (3.6)
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so that the values of #m in (3.1) correspond to the roots of equation (3.6). Next,

multiply (3.1) by a v and substitute (n - p) for n so that

M

}.,__p% = _ C,.,,ap#_ -v (3.7)
m=l

for 0 _< n - p _< N - 1. Next, replace #_-P with #nn(M_Mm-P to get

M

Xn-p ap ---- E Cmap r-mttn-M"M-Pr-m • (3.8)

rn=l

After the summation of both sides of (3.8) over 0 _ p < M note that the final

summation of
M M M

__, :_n-pap : _ Cmli_ -M _ a,# M-p = 0 (3.9)
p=0 rn=l p=0

is of the form of (3.6) evaluated at one of its roots and thus, equals zero. The left

side of (3.9) will form the recursive difference equation

M

_,_ =- _ a,_ _:,_-m (3.10)
rn----1

defined over m < n < N - 1. Note that (3.10) is in terms of the approximation series

_: which is still undetermined. By including the approximation error e from (3.5),

the difference equation of (3.10) can be expressed in terms of the original series xn.

Substituting for the approximation series in (3.10) results in

X n

M

: - _ am&,__, + e,_ (3.11)
m----1

M M

: - E am xn_,_ + E a,_ en-,_ (3.12)
m=l m=O

defined for M < n < N - 1. The Prony method requires the solution of (3.12) for

the a's while minimizing the squared error e,_. An iterative solution to this difficult

nonlinear system has been presented by Huggins and McDonough [18].

19



3.2 Extended Prony Analysis

The extended Prony technique is a method whereby' the nonlinear characteris-

tics of (3.1) can be linearized at tile cost of an acceptable, vet sub-optimal solution

[16]. The error measure for the Pronv technique has been shown to be the difference

between the sampled data x,_ and a linear prediction series based on I1 previous

samples of the approximation series. To simplify (3.11) into a linear equation where

the values am can be determined efficiently, define a modified error measure equal to

the difference between x,_ and a linear prediction series based on M previous samples

{ Xn-_l , "rn-M+ l , .... Xn-1}

where the modified error is

M

x,_ = - Z amx,,-m +e,, (3.13)
r_=l

M

e,_ = Z a_ en-m • (3.14)
rn=0

By minimizing this revised error measure, (3.13) degenerates into an efficient spec-

tral estimation technique known as Autoregressive (AR) parameter estimation. Ap-

pendix A describes AR modeling and presents an efficient method for AR parameter

estimation.

3.3 Second Order Extended Prony Analysis

Presented in this section is an implementation of a second order extended Pronv

technique applied to windspeed estimatiou of pulse Doppler weather radar data. The

extended Prony approach begins with any AR parameter estimation technique which

will generate the second order coefficients a, and a2. The Levinson-Durbin algorithm

described in Appendix A will be used to generate the AR coefficients due to its low

computational requirements which would facilitate implementation on a real time

windshear detection system. From the AR coefficients al and 32 the values of 1'1 and

tl,2 from (3.1) are determined through rooting the characteristic polyuomial

I_2 + olt* + "z = 0 . (3.1",)
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Note that/*1 and #2 are the pole locations in the z-planeof the All process.For the

secondorder case,thesepole locationscanbesolvedby wavof the quadratic equation

/ ^

-., + ,/.f - 4.:
_+ = -- (3.16)

2

-al - vta_l - 4a2
/1_ = (3.17)

2

The desired frequency, estimates as well as damping factors are derived from

the values of #+ and #_. The parameters Cl and C2 contain information about

amplitude and phase of the Prony model, but are not required for an extended Pronv

analvsis. Recalling that the #'s are related to the frequency' estimates by #_ =

exp [(c_m + j2rrfm)At] and that At is equal to the inter-pulse period Ts. the frequency'

values fl and .[2 are computed with

1
Jr, - arg(/_i) . (3.18)

2 :,rTs

The desired windspeed estimated can now be inferred from tile conversion from fre-

quency to velocity'

-Aof, -Ao
t,, - - arg(#,) . (3.19)

2 4rrTs

Note the similarity, between (3.19) and the pulse-pair equation given in (2.1). In fact.

the pulse-pair estimate of Doppler velocity is analogous to a windspeed estitnate from

a first order AR model where tile argument term would be the coefficient ,ll.

For reasons to be made clear in Chapter 4. a different assignment of the two

poles will be defined according to the magnitude of the respective Doppler velocities.

That is for pole 1

and for pole 2

{_+. I,,+1>1_,-I_1 = ll_, else (3.20)

= ,f _,+, I,'-I > I,'+1
1'2

/1_, else (3.21)[
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The damping factors 01 and a2 yield information about the spread of a spectral

mode. Small damping factors indicate wide spectral modes while larger damping

factors indicate narrower modes. The damping factors are equal to

In I_,l (3.22)
ai- PRF

It has been stated that the extended Prony method can yield a greatly simplified,

yet sub-optimal solution compared to the Prony technique. The concession made

by the extended Prony method is that the damping factor, a,_, and amplitude, Am,

have been reduced to a single parameter. This parameter is directly related to both

the damping factor and the amplitude of the spectral mode. A pole value with a

magnitude near unity will have a relatively large magnitude and a relatively small

damping factor, while a pole with a small magnitude will produce a smaller amplitude

and a larger damping factor. When one factor is changed the other will be changed

as well. This concession is not a concern in the present windshear detection problem

as only amplitude, and not the damping factor, is used in the current analysis.

A comparison between a second order AR model spectral estimate and an FFT

spectral estimate for a sample data set is provided in Figure 3.1. This 96 point

IQ data set contains returns from two distinct spectral modes: one mode is centered

about zero Doppler velocity while the other mode is at some negative velocity indi-

cating motion in a direction toward the aircraft. For the FFT operation, the sample

data has been zero-padded to a length of 128. Pole 1 and Pole 2 reflect the values of

I_1 and F_2 converted into a polar form where the pole's magnitude and argument are

represented. Note how the magnitude of each pole is reflected in the relative height

of the spectral peaks and that each pole's argument converted to Doppler velocitv

through (3.19) corresponds to the Doppler velocity of the spectral modes and the

local maxima in the AR spectral density. Even though a second order model such

as the the example in Figure 3.1) cannot be expected to provide an accurate and
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detailed spectral density, it is possible, however, for such a model to provide accurate

estimates of the frequencies associated with dominant spectral modes.

It is now possible to combine the pole values from a single range cell. such as

in Figure 3.1 with other pole values from all range cells in any given radar snapshot.

Figure 3.2 is a bubble plot which represents a series of 91 range cells and the pole

values which correspond to that cell. From the radar parameters given in section 1.5,

each range cell represents approximately 145 meters. On the bubble plot each range

cell has two circles associated with it which represents the argument and magnitude

of the second order pole locations. Pole magnitudes, that is their distance from the

..--domain origin, is shown bv the size of the circles, while the argument of a pole is

translated into its corresponding Doppler velocity estimate as computed by (3.19).

When viewing the two velocity estimates associated with a second order extended

Prony technique for the data in Figure 3.2, two distince modes appear indicating that

the energy in the return is from two or more separate return sources. II1 Figure 3.2

both a weather mode and a clutter mode are apparent. The "S"-curve feature can

be classified as weather return from a microburst event [19] while the strong mode

present throughout all range cells near Doppler zero can be classified as a clutter

mode. In this example, range cells 65-96 contain both a strong central clutter mode

as well as a weaker model located near 4-30 m/s. The pole values for these range cells

can be attributed to neither a weather nor a clutter return, but is a result of the AR

modeling process which will be discussed further in Chapter 4.

The windspeed estimates of the weather mode can be considered to be an unbi-

ased estimate because both spectral modes are modeled independently of each other.

The clutter return should be reflected in the clutter mode. leaving the weather mode

to reflect mostly weather return. For this reason, clutter rejection tiltering is not

required for windspeed estimation with this modal approach.

A complication to this second order approach arises due to the generation of two

\'elocitv estimates lot' each rallge cell volume, but the need of only a single windspeed
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estimate. Chapter 4 addresses this topic and presents various methods which attempt

to resolve the problem of characterizing the windfield through a second order extended

Prony approach.
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CHAPTER 4

WINDSPEED ESTIMATION FROM A TWO POLE MODEL

As introduced in Chapter 3, a second order Prony model may avoid the need

for typical clutter rejection filtering. However, further processing is required in order

to formulate a valid windspeed estimate. The identification of two spectral modes

by the extended Prony approach presented in Chapter 3 introduces the need for

some form of classification which can distinguish those modes that identify clutter

sources from those modes that identify" weather sources. Presented in this chapter

are two classification schemes which attempt to derive a windspeed estimate given

the parameters of a second order Prony model. The first classification scheme forms

a windspeed estimate based on the Doppler velocities associated with the poles of a

second order all-pole model. The second scheme implements an approximation which

allows for a windspeed estimate to be determined directly from the coefficients of a

second order autoregressive (AR) model which reduces the computational load of the

windspeed estimator.

4.1 Characterizing the Poles

Before attempting to classiC" spectral modes based on second order extended

Prony method pole values, discriminating characteristics are needed which will exploit

differences between clutter returns and weather returns. Such a statement assumes

that dominant weather and clutter modes present in the Doppler spectra will be

represented by a second order AR model. The complex pole values associated with

such a model yield information about the Doppler velocity and relative intensity of the

spectral modes through the pole's argument and magnitude, respectively. To examine

how a second order model might represent weather and clutter characteristics, first

analyze the Doppler spectrum over a series of range cells for situations with and



without a weatherreturn present. A 20th order AR model is usedin Figures4.1 and

4.2to provide ahigh orderapproximationof spectraldensityfor eachrangecell in both

a simulateddry microburst event(Figure 4.1) and a clutter only situation (Figure 4.2).

Both situations simulate an aircraft on final approach to Denver Stapleton airport

runway 26R with the microburst model D51. For each run tile antenna azimuth was

set at -10 degrees, antenna elevation was 1 degree above a glideslope of 3 degrees, and

the aircraft was positioned 7.4 km from touchdown. All simulation parameters have

been included in Appendix C. Data for the microburst model have been derived from

data collected during an actual microburst event which occurred on July 11. 1988

at Stapleton airport [20]. In the dry microburst situation, the energy return from

the leading edge of the outflow can be seen as a negative Doppler shift(headwind)

with a peak Doppler velocity of about -14 m/s in the vicinity of range cell 22,

while the backside of the outflow has a weaker return but can be distinguished as a

positive Doppler shift in the following range cells. In comparison, the "clutter only"

situation, shown in Figure 4.2 does not contain the "S"-curve pattern commonly

described as characterizing a microburst event. Instead. the return with little or

no weather appears as a single spectral mode near Doppler zero. To examine the

pole values for both the weather plus clutter situation and the clutter only situation.

bubble plots similar to Figure 3.2 in Chapter 3 are included in Figures 4.3 and 4.4.

It can be observed that for the dry microburst situation (Figure 4.3). the front edge

of the microburst is reflected by negatively shifted poles in range cells 20-28 while

the weaker outflow shows up as positively shifted poles in range cells :10-46. For the

clutter only situation (Figure 4.4), there appears to be no pole pattern which would

indicate any return other than clutter. Range cells 6-22 each contain one strong pole

near Doppler zero and one weaker pole near -t-30 m/s. These weaker poles (defined

as pole 1 because they have t ho greater Doppler velocity) may at first appear to

represent a weak weather mode since clutter is primarily near Doppler zero. but upon
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inspection their presence can be attributed to a pole spreading effect resulting from

the AR modeling process.

4.2 Pole Spreading Effect from AR Modeling

When the spectral content of a range cell is comprised primarily of a single strong

clutter mode, the pole values computed with a second order extended Prony method

will tend to double up to reflect this spectral mode. When the spectral content of

the return is of a more even distribution, that is, no single spectral mode dominates

the return, the poles will tend to spread out across the Doppler spectrum so that one

pole is at the central clutter mode while the other pole is situated approximately half

the distance around the unambiguous Doppler velocity spectrum.

This spreading effect is detrimental to the classification of weather poles and

thus, windspeed estimation. Difficulties arise due to similarities between weather

poles and poles resulting from a modeling effect when no weather return is present.

Much of the effort to classify weather poles from non-weather poles is directed toward

distinguishing and removing poles caused by spreading from valid weather poles.

The spreading out effect of the poles along the Doppler spectrum is not only

limited to a second order model, but is also seen in higher order models as well.

For example, Figure 4.5 is a bubble plot of the same clutter onlv simulation but

with three poles per range cell. Observe that in range cells 6-22 the three pole

values are distributed evenlv throughout the Doppler spectrum, that is all poles are

positioned approximately' 20 m/s from the other two pole location in the Doppler

velocity spectrum. These are the same range cells where pole spreading was observed

in the two pole case. In the latter range cells, pole spreading occurs, but in this case.

the central clutter mode is more dominant and attracts two pole values while only

the third pole spreads away from the other two.
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4.3 Two Class Pattern Recognition Technique

In statistical pattern recognition terms, the second order extended Prony method

sets up the basis for a two class pattern recognition problem [21] where the two classes

of interest are weather and no weather. Since a windspeed estimate is actually the

desired result, certain conditions will be incorporated into the classification system:

1. Pole 1 is defined as that pole with the greatest Doppler shift.

2. Pole 2 is defined as the remaining pole in each range cell.

3. Pole 1 may or may not be classified as weather.

4. Pole 2 will always be classified as non-weather.

5. Both poles may be classified as non-weather poles.

6. The windspeed estimate for a range cell with a pole classified as weather will

be the Doppler velocity associated with the weather pole.

7. The windspeed estimate for a range cell without a pole classified as weather
will be zero.

Condition 7 deserves further discussion. It states that if neither pole is given the

classification of weather then the windspeed estimate will be assigned a zero value.

For a return consisting of stationary clutter with pole spreading, or for a return with

discrete clutter, a spectral mode away from zero will be present that is not a result

of a weather return. A classification scene will attempt to distinguish between these

non-weather pole sources and true weather sources in an effort to estimate windspeed.

When pole 1 is awav from Doppler zero and the classifier determines that it is not

weather, then the windspeed estimate will be zero on the basis that no pole could be

identified as a weather source.

At this point, the definition from Chapter 3 that pole 1 is that pole with the

greatest Doppler velocity shift begins to become apparent. The reasoning behind

such a definition is due to the characteristics of weather and clutter modes. Because

clutter modes are typically near Doppler zero and weather modes can be shifted some

amount away from Doppler zero, the assumption can be made that if one of the
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spectral modes is indeed a weather mode, then this mode will have a greater Doppler

shift than the clutter mode present. Therefore, by classifying pole 1 and pole 2 in

this manner, pole 2 will always have the classification of a clutter pole while pole 1

may or may not be classified as a weather pole.

Classification begins with the selection of features, or measurements used to

distinguish between classes [21]. In this discussion, features will be limited to mea-

surements of pole values independent of range cell number. Further research may

incorporate pole values across a series of adjacent range cells for additional informa-

tion which may enhance the ability of the classifier to distinguish between weather

poles and non-weather poles. Taking this approach one step further, classification

could draw upon previous classifications, which adds a time variable to the classifi-

cation scheme. By increasing the scope of the classification process beyond a range

cell-by-range cell decision, the negative effects of pole spreading and discrete clutter

may be better eliminated. This extension to the pole classifier will be left as the topic

of further investigation.

The classification scheme presented in this discussion consists of a two-dimension-

al feature space. The features chosen should be such that differences between the two

decision classes are apparent, thus allowing for a decision to be made. One possible

choice of features is the real component of each pole and the imaginary component

of each pole. For a two-dimensional case such as the current estimation problem,

plotting the two features against one another will usually give an indication as to the

ability to form a reliable decision. Therefore, for the current problem, the feature

space is the complex plane on which the values of pole 1 and pole 2 are to be plotted.

Figures 4.6 and 4.7 are the values of pole 1 for both the simulated microburst event

and the simulated clutter onlv event, while Figures 4.8 and 4.9 are the values of pole 2

for the same situations.

Bv comparing the values of pole 1 in Figures 4.6 and 4.7, an3' pattern differences

between the two pole distributions may be attributed to the presence of a weather
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return in Figure 4.6. Although a difference does exist in that the weather and clutter

simulation produced poles with larger positive imaginary components than the clutter

only simulation, an improved choice of features may exist. Since windspeed estima-

tion, or the Doppler velocity shift caused by a weather mode is the final objective,

choose a polar representation for the set of features that includes ( 1 ) Doppler velocitv

and (2) complex pole magnitude. By plotting pole values in this revised feature space

the weather pole and the clutter pole attributes become more apparent allowing for

the feature space to be partitioned into decision regions where classifications can be

made. Figures 4.10 and 4.11 are distributions of pole 1 in the polar feature space and

Figures 4.12 and 4.13 are distributions of pole 2 in the same feature space.

Once a feature space is determined, the next step in classifying poles as weather or

non-weather is to partition the feature space into decision regions where classifications

can be made according to each pole's location in the feature space. In comparing

Figure 4.10 with Figure 4.11, a group of poles is present in the microburst simulation

that is not present in the clutter only simulation. The poles are between -10 m/s

and -15 m/s Doppler velocitv with magnitudes greater than 0.6. Upon comparing

the scatter plots in feature space with the bubble plots, it can be determined that

the group of poles mentioned are the same poles which reflect the leading edge of the

microburst event recorded in range cells 20-28. As seen in Figures 4.12 and 4.13. the

Doppler velocities associated with pole 2 are in the region near Doppler zero. For

this reason pole 2 is always given the classification of clutter.

The decision regions which separate those poles classified as weather from those

poles classified as non-weather will be determined through an analysis of pole distri-

butions from a large collection of return data. The data used includes 10 simulated

returns of the July llth microburst event in Denver as well as 10 returns of the same

situations without weather present. Although the decision regions determined from

this data will be particular to the Denver area and the type of microburst included

in the simulation, the apl)roach to I)e discussed can be extended to any location or
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Figure 4.12
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weather condition. A more complete analysis may include data which is distributed

among a variety of locations and weather conditions and may reveal the optimum

decision regions given all situations.

If weather poles and non-weather poles could always be separated due to their

appropriate values then the classification scheme would be trivial. Unfortunately,

weather poles and non-weather poles may occupy the same region in feature space.

The decision boundary should be designed so as to minimize classification errors.

Presented in Figures 4.14 and 4.15 are scatter plots of the pole locations for the

simulated weather plus clutter and clutter only returns for 10 simulated runs. Note

the existence of weather poles in Figure 4.14 which are not present in tile clutter

only simulations. The decision boundary has been empirically determined based on

analvsis of the pole locations and the apparent clustering of weather poles and non-

weather poles. As the quantity and the types of data returns increases, a thorough

analytical derivation of decision boundaries may be undertaken. The boundary in

Figures 4.14 and 4.15 is a second order polynomial of the form

v 2 8
9(v) - + -- (4.1)

1.2v 2 + 450 v 2 + 12

where v is Doppler velocity and 9(v) in the corresponding pole magnitude. The

windspeed estimate for each range cell can thus be modeled by

{ vl for g(vl)< ]/2112 (4.2)i' = 0 else

Figure 4.16 details the complete algorithm which derives a windspeed estimate from

an IQ data series using the two class pattern recognition classification procedure

presented in this chapter.

By overlaying the windspeed estimate derived from a second order modal classi-

fier along with a filtered pulse-pair windspeed estimate onto a bubble plot of the pole

values, several characteristics of the classifier can be seen. In Figures 4.17 and 4.18
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Figure 4.16 Two Class Pattern Recognition Windspeed Estimator
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observe that the windspeed estimate either passes through the pole with the great-

est Doppler velocity, or it is set to zero. The pulse-pair estimator has a bias toward

Doppler zero causing its windspeed estimates to be smaller than the modal estimates.

Also notice that the poles with large Doppler shifts created through pole spreading

have been removed by the classifier due to their small magnitudes. The pulse-pair

windspeed estimates also contain some amount of editing from the pulse-pair spectral

width estimator. When the spectral width becomes larger that a certain threshold

value, such as 8 m/s in this case, the pulse-pair windspeed estimator is set to zero

because the spectrum lacks a dominant spectral mode which causes the pulse-pair

estimator to become erratic.

4.4 Second Coefficient Windspeed Estimator

By making the assumption that clutter modes will be primarily near Doppler

zero, a simplification to the modal windspeed procedure can be achieved. Begin with

the second order characteristic polynomial from (3.15) and solve for the coefficients

al and a2 in terms of pole values

a, = -(/la + #2) (4.3)

a2 = /_1 "/12 . (4.4)

Express (4.4) in polar form

a2 = I/_,11#21 {cos(O, + 02) +jsin(O_ + 02)} (4.5)

where

0, = arg(#l) (4.6)

02 = arg(t_2). (4.7)

Bv assuming that one pole will remain near Doppler zero, 02. which is defined

to have the smaller Doppler shift, will be nearly zero. \Vith this assumption the
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argument of a2 which is the sum of the arguments of both poles will be nearly equal to

the argument of pole 1 (#1). The implication of this is that a savings of computational

resources may be achieved with this approximation as shown in Figure 4. t9. For this

method the decision boundarv can be applied directly to the polar value of the second

AR coefficient as without the need for computing poles or selecting pole 1 and pole 2

based on Doppler velocities.
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5.1 Comparison of Windspeed Estimates

Begin the analysis bv comparing windspeed estimates between techniques. In

order to include all 42 frames of data, a three dimensional view of windspeed estimates

is used. The pulse-pair estimates of windspeed provided the pulse-pair spectral width

is less than 8 m/s are provided in Figures 5.1 and 5.2. The estimates have been set

to zero for width values greater than the threshold. Figure 5.1 is a view of actual

values for each range cell for each frame while in Figure 5.2 the estimates have been

smoothed by averaging over a three cell by three frame region with the center cell

and frame reflecting the average. In the smoothed plot windspeed trends are more

readily seen which will aid in comparing estimation techniques. By observing these

windspeed trends, characteristics of the microburst event can be seen. First, notice

that the windspeed features are slanted in a diagonal direction flom low frame and

high range cell to a high frame number and a low range cell. This is created by the

aircraft motion as it approaches and enters the microburst. At the first snapshot

(frame 1) the event is seen in the larger range cells because the flight begins at a

distance of about 8.5 kin. During each successive frame the aircraft flies closer to the

event which shifts its corresponding radar return in to closer range cells.

Another feature that can be seen in the windspeed plot is a valley that is located

in front of a rising ridge. The vallev is created by negative Doppler shifts which

indicate a performance increasing headwind and the ridge indicates positive Doppler

shifts which are induced by a performance decreasing tailwind. By putting these two

features together while looking at the estimates from one frame only. the characteristic

"S"-curve pattern appears. These windspeed "slices" for each frame are included in

Appendix B.

For a two pole classifier which will be applied to the Orlando event 143, begin

by observing the distribution of pole 1 for all frames, given in Figure 5.3. Notice that

the boundary 9(c) which was determined for the simulated situation in Chapter 4

has been overlaid otlto the pole ,listritmtion for this situation as well. The feature

48



VELOC I TY

30

-10

-30_II:iI;I_
86

_6

66

56

I;

42

1
6

Figure .3.1 Pulse-Pair Velocity Estimates for Even_ 143

VELOCITY

10

-10

-30

96

86 42

!lit

36

26

1
6

Figure .5.2 Pulse-Pair \elocitv Estimates for Event 143. smoothed

49



space boundary in this analysis will reflect simulated data on account of the lack of

any clutter only data available at the present time for the Orlando area. A decision

boundary determined from a situation which does not have both weather plus clutter

and clutter only data will most likely not yield results that are as good as when both

cases are available. For this reason, the classifiers presented in this chapter will use

the decision boundary determined in Chapter 4.

As the volume of useful clutter data increases, analyses of pole value distributions

at certain locations, antenna elevations, and azimuths, may indicate that one decision

boundary for a particular location is not sufficient. It may be beneficial to implement

several decision boundaries depending upon these or other factors. At tile present

time it is not known how pole distributions change, given these factors. This analysis

will be left for future research as more data becomes accessible.

By implementing the two pole classifier as specified in Chapter 4 with the decision

boundary as shown in Figure 5.3, the estimated values of windspeed are computed

and shown in Figures 5.4 and 5.5. Again, Figure 5.5 contains a smoothed sample of

the windspeed estimates. It is now possible to compare the two pole classifier with the

pulse-pair estimator over several range cells. Notice that the general shape of both

estimators is similar in that both contain tile diagonal valley and ridge. To compare

windspeed magnitudes refer to the individual frame plots included in Appendix B.

One feature that is present in tile two pole classifier that is not present in the

pulse-pair estimator is peaks of large Doppler velocities which occur primarily in the

range cells following the microburst event. These peaks result from range cells where

pole spreading occurs and the classifier assigns the spread pole as weather instead of

recognizing it as clutter. This error can be seen in the pole scatter plot (Figure 5.3) as

those poles with a large Doppler velocity and are large in magnitude. These poles do

not appear to fit with the cluster of weather poles, seen as large magnitude poles with

Doppler velocities between +10 m/s. The classifier can not differentiate between these

poles and weather poles due to them being located in a region where weather poles
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may appear. Rejecting thesepolesby altering the decision boundary will enhance

estimation for this particular case.but may removeimportant weather poles when

usedin another situation.

The next windspeedestimator that will be examined is the second coefficient

estimator. As shownin Chapter 4 this is a simplified versionof a two pole classifier

which assumesat leastone pole will be near Doppler zero for a reliable windspeed

estimate. In this method the decisionboundary is applied to the secondAR coeffi-

cient rather than the pole with the greatestDoppler velocity. Sincethe secondAR

coefficientis the product of the two complexpoles,the differencebetweenthe second

coefficientand pole 1 is the valueof pole 2. For returns with mostly stationary clutter

the value of pole 2 will be approximately 1. Figure 5.6 is a scatter plot of second

coefficient valueswhich closelymatchesthe scatter plot formed from pole 1 values

(Figure 5.3). By applying the samedecisionboundary to the secondcoefficient that

was applied to pole 1 in the two pole classifier, the windspeedestimates given in

Figures 5.7 and 5.8 areproduced.

A comparisonbetweenthe unsmoothedwindspeedestimatesfrom the secondco-

efficientand the two pole classifierrevealsthat the two estimatorsyield similar results

for this situation. Somedifferencesthat can be noted are the apparent reduction of

misclassificationsin the secondcoefficientestimator which results in fewer isolated

peaksin the velocity estimateplots. This maybe attributed to the secondcoefficient

having a smaller magnitude than pole 1 as a result of its muhiplication bv pole 2

which has a magnitude lessthan unity. Having a slightly smaller magnitude will

tend to increasethe probability that the secondcoefficientwill be below the decision

boundary thresholdand will be set to zero when pole 1 may be above the threshold.

It can be observed in the single frame plots included in Appendix B that the second

coefficient estimator is more often set to zero than the two pole classifier. This rela-

tion may indicate that separate decision boundaries may be required for each type of

windspeed estimat or.
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By further comparing the windspeedestimatesprovided in Appendix B. several

more observationscan be made about the filtered pulse-pair, the two pole classi-

fier, and the secondcoefficientestimator. First, notice that the two modal analysis

methodsgeneratesimilar resultswhich indicatesthat a windspeedestimatecomputed

directly from AR coefficientsmay be feasible. Comparedto the pulse-pair method,

modal analvsistends to generatelargerwindspeedestimates,which canbeattributed

to the clutter bias presentin the filtered pulse-pair estimates. On the other hand,

the modal analysis results appear to be moreerratic than the pulse-pair estimates.

This is seenmore in both the first group of range cel]s and the last group of range

cells where the microburst return is not as stong. The erratic behavior of the modal

estiates may be improved by implementing a more accurate decision boundary and

forming windspeed estimates from pole values beyond the current range cell.

5.2 Comparison of Hazard Factors

The hazard factor values computed in this discussion are derived from the weight-

ed least-squares procedure discussed in Chapter 2. The hazard factor is computed

for each frame and the results are reeombined to produce another three dimensional

plot similar to the windspeed estimate plots presented earlier. Figures 5.9 - 5.14

are included and contain hazard factor values for the windspeed estimators being

compared. For clarity, only hazard factor values which exceed a threshold of 0.i are

included. The remaining values are set to zero in the plot. In this way. the regions

with a possible hazard are emphasized. Also presented with the three dimensional

surface plot of hazard factor is a contour plot of the same data. The contour plot

assists in locating exactly which frames and corresponding range cells contain a hazard

factor above the threshold.

In comparing between the hazard factor values for all three windspeed estimators.

all reflect a diagonal line where the hazard factor exceeds the threshold. This line

corresponds to the diagonal valley and ridge seen in all windspeed estimates. The
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hazard line is a result of a detected headwind (the valley) which is folh _'dbv a

tailwind (the ridge), The hazard factor is an atlempt tx) measurethe a ,ount of

performancelosswhich an aircraft couldexpect to encounterby proceeding_llrough

the forward-looking region.

Upon closerexamination of the hazard factor values, somedifferencesbetween

the three techniquesbecomeapparent. One of the moreoi,vio,_sdifferencesmay be

the existenceof two parallel hazard lines in the modal analysis techniqueswhil,, the

pulse-pairshowsonly one diagonalhazardfactor line. This ca,_be attributed to L....

modal classifierassigningzerowindspeedestimatesto weather poles in a region near

Doppler zero. This createsa flat segmentin the windspeedestimateswhere the "S"-

curve crosseszerovelocity'.The hazardfactor is reducedwhen it encountersthis flat

segment,but is large on either side where the windspeedestimates diverge. Ai:o,

the pulse-pair estimator includes fewer spurious peaks in the hazard factor, while

the two pole classifier includes the mosl spurious hazard peaks. \Vhen comparing

magnitudes of the hazard factors, all contain values between 0.1 and 0.2 for the

diagonal lines. A difference does exist, however, in the magnitudes of the isolated

hazard peaks. The pulse-pair estimator not only has fewer isolated peaks, but these

peaks have magnitudes that are smaller than the peaks originating from the mo¢,al

analvsis methods.

5.3 Fixed Range Time Scan

In a typical pulse Doppler radar system the signal processing involved will work

with the data in the form of energy returns from a number of incremental range

cells, each a specified distance from the radar antenna. In this way. the processing

of the data is nearly simuhaneous over a spatial region. For radar systems that

have a moving platform, such as an airborne system, a different technique may be

employed that analyzes data t_v tixiI_g the radar scan range to one spatial distance

and processing additional (tara over time as the aircraft moves through the spatial
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region. This type of processing will be referred to as a fixed range time scan. A

depiction of a both a snapshot return and a fixed range time scan return are given in

Figures 5.15 and 5.16.

One method for understanding how a fixed range time scan functions in com-

parison to a snapshot is to look again at windspeed estimates for several range cells

and several frames such as Figures 5.9, 5.11 and 5.13. Recall that a typical snapshot

would process all range cells one frame at a time. This can be visualized by separat-

ing the three dimensional plot into a series of two dimensional plots that contain one

frame number each. The slicing of the plot in this way is illustrated in Figure 5.17.

The fixed range time scan processes data from a fixed distance over time. This

can be visualized by slicing the three dimensional plot into individual range cells with

all frames included. Figure 5.18 is an illustration of this method. The frames become

a time axis due the sequential order in which they are recorded. For this situation,

which is a two pole classification estimator of the Orlando event, each range cell

represents approximately 2.8 seconds, which is the amount of time required for the

antenna sweep pattern to cross zero azimuth. Because the valley and ridge features of

the microburst are diagonal to both frame and range cell, it is possible to take slices

from either a fixed range (cell) or a fixed time (frame).

One advantage of a fixed range time scan is that all returns will occur from the

same range which balances the quality of the return across the spatial region. In

a snapshot, returns from the farther range cells will suffer from signal attenuation

while the closer range cells contain strong returns. The fixed range time scan allows

the return data from a spatial region to be processed as soon as it enters a specified

region of the aircraft. In this way, processing can be compared to an in situ windspeed

estimator that is positioned at a fixed distance in front of the aircraft. The processing

of data to derivea hazard factor would be similar to an in situ hazard processor. More

than one fixed range could be specified in order to allow for different warning intervals

based on the ability of the radar system to detect a hazard. Strong hazards could be
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detected with a greater warning time while events with weaker returns might require

a closer range and thus, less warning time.

Finally, the fixed range time scan could work in conjunction with typical radar

snapshots by' providing an additional viewpoint to the current situation, lqv providing

feedback to the information gained by radar snapshots, a _;xed range time _can could

increase the reliability of the estimates generated.
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CHAPTER 6

CONCLUSIONS

With conventional signal processing techniques the ability of an airborne pulse

Doppler radar system to successfully detect the presence of a hazardous windshear

condition such as a microburst relies heavily upon the correct estimation of windfield

characteristics. The presence of ground clutter for aircraft operating at low altitudes

in and near urban terminal areas inhibits the radar's ability to clearly resolve wind-

speed estimates. Typically the solution to this problem is to attempt to remove the

effect of clutter with clutter rejection filters. With Doppler spectrum modal analysis

as presented and discussed in this thesis, the clutter is not removed by filtering, but

modeled along with any weather return and discarded through a mode classifier. If

classified correctly, the weather mode has the potential to yield a windspeed estimate

which lacks bias from the clutter mode due to the separate modeling of the clutter

return.

Modal analysis of Doppler radar data applied to windspeed estimation possesses

several favorable attributes over more conventional methods such as the pulse-pair

estimator. Among these attributes are a low computational load due to the absence

of clutter rejection filtering and the ability to yield unbiased windspeed estimates

even in low signal-to-clutter environments. Unfavorable attributes of modal analysis

include variance in the windspeed estimates resulting from misclassification of some

poles, which increases the probability of false alarm. An improved pole classification

scheme should be addressed in future research.

Currently, one disadvantage of modal analysis is the lack of an optimal method

for determining the decision boundary in the pole classifier. This is primarily due

to the limited amount of flight data available from which to form a statistical model

of the poles. As flight data becomes more accessible, more complete knowledge of



clutter characteristicscanbeobtained,which should increasethe effectivenessof pole

classifiers. Classification beyond the scope of a single range cell should add stability

to windspeed estimates as well as reduce the adverse effects of pole spreading and

discrete clutter.

The classification nature of modal analysis lends itself to advanced areas such

as pattern recognition and neural computing. Pattern recognition routines may be

able to detect hazardous windshear conditions through direct processing of radar IQ

data without the need for computing windspeed estimates. For example, a pattern

recognition routine formulated as a data transformation algorithm might be trained

to recognize the "S'-curve characteristic of a microburst. Then windshear signatures

across time and/or azimuth can be combined and averaged to improve the ability to

recognize and detect a hazardous condition.

It may also be possible to formulate a more robust windspeed estimator based on

a combination of two or more individual estimators. Because each type of estimator

has certain strengths and weaknesses, an integration of several estimators could lead

to better results by using the best aspects of each system. For example, by using

pulse-pair estimates in conjunction with a two pole model, the confidence in detecting

hazards may be increased.

Finally, by examining data presented through a fixed range time scan, windfield

estimates can be obtained in a method analogous to a predictive in situ hazard de-

tector. Since each estimate is obtained as the aircraft is moving through a spatial

region with a constant radar range, signal attenuation remains nearly constant. In

comparison, a radar snapshot will contain close range cells with little attenuation and

farther range cells with much attenuation.
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Appendix A

Autoregressive Modeling

Autoregressive (AR) modeling is a popular form of spectral estimation due to

a relatively low computational power required and an improved spectral resolution

over conventional FFT approaches [16]. AR models are an all-pole model having the

following spectral density:

a2At
PAR(f) = v (a.1)

1 + _., akexp(-j27rfkAt) 2
k=l

where At is the sampling interval of the process• An AR model of order p requires the

estimation of the parameters {al, a2,..., ap, _r2}, where p can be any positive integer.

Presented here will be the Levinson-Durbin algorithm for fitting the AR parameters

to a set of sample data. Other methods of AR modeling exist and are discussed by

Kay and Marple [16] and Keel [9].

A.1 Levinson-Durbin Algorithm

This is an iterative procedure for computing the pth order AR parameters asso-

ciated with a complex series x_ based on the relationship between the AR parameters

and the autocorrelation function of the complex series. In matrix form the relation-

ship is described by

...

R_(p) R_.(p-1) ... R_(-0)

where the autocorrelation estimate of a',, is given by

1

a!

(/p

I 0 2

0

0

(A.2)

1 ,\" -- m -- 1

Rx:r(77') = .\---:' _ ,rn+mX,: " (A.3)
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This relationship can assumeseveral forms, but in general is known as tile Yule-

Walker equations [16]. The Levinson Durbin algorithm iterates through successively

higher order AR parameter sets {a_a,..'_},{a21,a22,_.'_},.... {apl.ap2,... ,.,2} where

,: , refers to the ith coefficient of the kth order AR model. The procedure stops when

the desired model order is reached. Begin the algorithm with the first order model

parameters

R::(1)
all - (A.4)

R=(0)

(7_ = (1 -la,,12)R_(0). (A.5)

Higher order parameters are recursivelv computed as follows:

k_, ]
0"2-1 /=1

ak-l,i + akka2_l.k_ _

2o_ (1- akkl:)o'L, .

(A.6)

(A.7)

(A.8)

The recursive nature of the Levinson-Durbin algorithm has the advantage of com-

puting not only the AR coefficients for the given model order, but also for all lower

order models as well, which can help in the determination of the correct model order.
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